Technologies

Martin Dufva

The lab has been working with several high throughput systems such as DNA and protein microarrays, droplet arrays and lately water in oil emulsion. The DNA microarrays dealt with surface effects of hybridisation, analytical tests and surface chemistries 1–4 while peptide arrays were used for epitope mapping 5,6. The droplet arrays where developed as a flexible and easy to use analytical digital quantification platform but is currently being explored as a high throughput screening platform and is a competitor to water in oil emulsions screening that we recently have developed in the lab7.

 

Another major part of Dufva lab is organ modelling. Here the goal is to create tissue and organ models using combination of microfluidics8,9 and structured hydrogels10. Organ/tissue models are the intestine, fat, liver, blood vessels. The goal is to combine these into an easy to use, yet physiologically relevant, and high throughput system. Methods will include 3D printing and hydrogels. The biological goal is to look at organ/tissue interactions.

 

The group's knowledge has been used in collaborations and resulted in high profile journal publications regarding sensors for DNA melting analysis11,12, stem cell differentiation on structured surfaces13 and real time detection of diffusion14.

 

1         L. Poulsen, M. J. S??e, D. Snakenborg, L. B. M??ller and M. Dufva, Nucleic Acids Res., 2008, 36.

2         J. Petersen, L. Poulsen, S. Petronis, H. Birgens and M. Dufva, Nucleic Acids Res., 2008, 36, e10.

3         F. Fixe, M. Dufva, P. Telleman and C. B. V Christensen, Nucleic Acids Res., 2004, 32, e9.

4         R. Marie, S. Schmid, A. Johansson, L. Ejsing, M. Nordström, D. Häfliger, C. B. Christensen, A. Boisen and M. Dufva, Biosens. Bioelectron., 2006, 21, 1327–32.

5         A. Christiansen, J. V Kringelum, C. S. Hansen, K. L. Bøgh, E. Sullivan, J. Patel, N. M. Rigby, T. Eiwegger, Z. Szépfalusi, F. De Masi, M. Nielsen, O. Lund and M. Dufva, Sci. Rep., 2015, 1–13.

6         C. S. Hansen, M. Dufva, K. L. Bøgh, E. Sullivan, J. Patel, T. Eiwegger, Z. Szépfalusi, M. Nielsen and A. Christiansen, J. Allergy Clin. Immunol., 2016, 138, 1728–1730.

7         J. Chen, Mi. Vestergaard, T. G. Jensen, J. Shen, M. Dufva, C. Solem, Jensen and P. Ruhdal, MBio, 2017, 8, e00526-17.

8         M. Hemmingsen, S. Vedel, P. Skafte-Pedersen, D. Sabourin, P. Collas, H. Bruus and M. Dufva, PLoS One, 2013, 8.

9         M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva and O. Geschke, Lab Chip, 2010, 10, 2162–9.

10       R. Pimentel C., S. K. Ko, C. Caviglia, A. Wolff, J. Emnéus, S. S. Keller and M. Dufva, Acta Biomater., 2018, 65, 174–184.

11       G. Rizzi, J. R. Lee, C. Dahl, P. Guldberg, M. Dufva, S. X. Wang and M. F. Hansen, ACS Nano, 2017, 11, 8864–8870.

12       G. Rizzi, J.-R. Lee, P. Guldberg, M. Dufva, S. X. Wang and M. F. Hansen, Biosens. Bioelectron., 2017, 93.

13       C. H. Rasmussen, P. M. Reynolds, D. R. Petersen, M. Hansson, R. M. Mcmeeking, M. Dufva and N. Gadegaard, Adv. Funct. Mater., 2015, 815–823.

14       C. Vannahme, M. Dufva and A. Kristensen, Light Sci. Appl., 2015, 4, e269.

http://www.nanotech.dtu.dk/Research-mega/Forskningsgrupper/Dufva
22 SEPTEMBER 2018